2011/65/EU RoHS 2.0 Adapter Computer Speaker Test

2011/65/EU RoHS 2.0 Adapter Computer Speaker Test

Hazardous materials and the high-tech trash problem RoHS and other efforts to reduce hazardous materials in electronics are motivated in part to address the global issue of consumer electronics waste. As newer technology arrives at an ever-increasing rate, consumers are discarding their obsolete...

Product Details

Hazardous materials and the high-tech trash problem

RoHS and other efforts to reduce hazardous materials in electronics are motivated in part to address the global issue of consumer electronics waste. As newer technology arrives at an ever-increasing rate, consumers are discarding their obsolete products sooner than ever. This waste ends up in landfills and in countries like China to be "recycled."


In the fashion-conscious mobile market, 98 million U.S. cell phones took their last call in 2005. All told, the EPA estimates that in the U.S. that year, between 1.5 and 1.9 million tons of computers, TVs, VCRs, monitors, cell phones, and other equipment were discarded. If all sources of electronic waste are tallied, it could total 50 million tons a year worldwide, according to the UN Environment Programme.


American electronics sent offshore to countries like Ghana in West Africa under the guise of recycling may be doing more harm than good. Not only are adult and child workers in these jobs being poisoned by heavy metals, but these metals are returning to the U.S. "The U.S. right now is shipping large quantities of leaded materials to China, and China is the world's major manufacturing center," Dr. Jeffrey Weidenhamer says, a chemistry professor at Ashland University in Ohio. "It's not all that surprising things are coming full circle and now we're getting contaminated products back."


Changing toxicity perceptions.

In addition to the high-tech trash problem, RoHS reflects contemporary research over the past 50 years in biological toxicology that acknowledges the long-term effects of low-level chemical exposure on populations. New testing is capable of detecting much smaller concentrations of environmental toxicants. Researchers are associating these exposures with neurological, developmental, and reproductive changes.


RoHS and other environmental laws are in contrast to historical and contemporary law that seeks to address only acute toxicology, that is direct exposure to large amounts of toxic substances causing severe injury or death.


Life-cycle impact assessment of lead-free solder

The United States Environmental Protection Agency (EPA) has published a life-cycle assessment (LCA) of the environmental impacts of lead-free and tin-lead solder, as used in electronic products.For bar solders, when only lead-free solders were considered, the tin/copper alternative had the lowest (best) scores. For paste solders, bismuth/tin/silver had the lowest impact scores among the lead-free alternatives in every category except non-renewable resource consumption. For both paste and bar solders, all of the lead-free solder alternatives had a lower (better) LCA score in toxicity categories than tin/lead solder. This is primarily due to the toxicity of lead, and the amount of lead that leaches from printed wiring board assemblies, as determined by the leachability study conducted by the partnership. The study results are providing the industry with an objective analysis of the life-cycle environmental effects of leading candidate alternative lead-free solders, allowing industry to consider environmental concerns along with the traditionally evaluated parameters of cost and performance. This assessment is also allowing industry to redirect efforts toward products and processes that reduce solders' environmental footprint, including energy consumption, releases of toxic chemicals, and potential risks to human health and the environment. Another life-cycle assessment by IKP, University of Stuttgart, shows similar results to those of the EPA study.


Life-cycle impact assessment of BFR-free plastics

The ban on concentrations of brominated flame retardants (BFR) above 0.1% in plastics has affected plastics recycling. As more and more products include recycled plastics, it has become critical to know the BFR concentration in these plastics, either by tracing the origins of the recycled plastics to establish the BFR concentrations, or by measuring the BFR concentrations from samples. Plastics with high BFR concentrations are costly to handle or to discard, whereas plastics with levels below 0.1% have value as recyclable materials.


There are a number of analytical techniques for the rapid measurement of BFR concentrations. X-ray fluorescence spectroscopy can confirm the presence of bromine (Br), but it does not indicate the BFR concentration or specific molecule. Ion attachment mass spectrometry (IAMS) can be used to measure BFR concentrations in plastics. The BFR ban has significantly affected both upstream — plastic material selection — and downstream — plastic material recycling.


CNAS Accreditation

image001(001).jpg


FCC accreditation

image003(001).jpg

Chemical test

image005(001).jpg


Safety Test

image007.jpg


Radiated Emission

image009(001).jpg


SAR Test

image011(001).jpg

Related Products
Inquiry